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Abstract—The AMSAT CubeSat Simulator is a Raspberry Pi-
based, 3D printed functional model of a CubeSat satellite that 
transmits current, voltage, and temperature telemetry on the UHF 
ham radio band. This paper describes educational activities that 
can be performed with the Simulator relating to failure 
simulations and troubleshooting using telemetry.  In addition, we 
demonstrate the use of an Arduino as payload. 

Keywords—cubesat, simulator, telemetry, AMSAT, ham radio, 
raspberry pi, arduino 

I.! INTRODUCTION 
In 2018, we introduced the new AMSAT CubeSat Simulator 

as a tool for satellite technology education and demonstrations.  
We described the proof-of-concept prototype that we built and 
demonstrated at the 2018 AMSAT Annual Meeting & Space 
Symposium in Huntsville, Alabama.   

In The AMSAT Journal, January/February 2019 issue, we 
described some educational activities that can be done with the 
CubeSat Simulator by looking at the activities of the original 
ARRL ETP CubeSat Simulator, as described by Mark Spencer, 
WA8SME, roughly ten years ago, as fully referenced in our 
earlier works.  

In this article, we describe some new activities that we have 
developed with the new CubeSat Simulator.  These include 
some interesting failure simulations, efficiency and maximum 
power point calculations. In addition, we discuss using an 
Arduino as a payload for the Simulator. 

II.! BACKGROUND 
The new AMSAT CubeSat Simulator, shown in Figures 1 

and 2, is a Raspberry Pi Zero W-based, 3D-printed frame 
structure, functional model of a “1U” CubeSat that is designed 
to act, as reasonably as possible, as one flying in Low Earth 
Orbit (LEO).  Its purpose is to demystify to all how satellites 
work.  Like typical LEO satellites, this simulator runs on 
rechargeable battery power and solar cell panels.  Our model 
currently transmits UHF telemetry on the 70 cm ham radio band 
using the AMSAT OSCAR 7 (AO-7) format using AFSK 
modulation.  For details on the design and construction of the 
simulator, see our paper in the 2018 AMSAT Annual Meeting 

& Space Symposium proceedings [1] or as updated and edited 
for the Nov/Dec 2018 issue of the AMSAT Journal.   

 

 
Fig. 1.! The AMSAT CubeSat Simulator Proof of Concept Prototype. 

 
Fig. 2.! The latest CubeSat Simulator board stack showing (from the top) the 
Digital Transceiver Board, MoPower UPS V2 Board, Raspberry Pi Zero W 
Board, and the custom AMSAT Solar Power Board with Current and Voltage 
Sensors Mounted Vertically.  
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The telemetry data graphs shown in this paper were 
generated by placing the CubeSat Simulator on a rotating 
turntable in front of a halogen work lamp, which simulates a 
spinning satellite in space, as shown in Figure 3. 

 

 
Fig. 3.! The CubeSat Simulator on a Rotating Turntable under Halogen Work 
Lamp Illumination. 

The remainder of this article describes new activities for the 
CubeSat Simulator. They include some real-world simulated 
and actual failures, with several plots to support troubleshooting, 
and also some efficiency calculations.  Each of these simulator 
exercises to date provide the basis for valuable lessons in 
understanding satellite technology and in developing one’s 
skills.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.! Block Diagram of the CubeSat Simulator  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SATELLITE FAILURE 
 
The literature in the small satellite 
community ranks the frequency of on-orbit 
failures by subsystem.  Of the top ten major 
subsystems of every satellite (shown in Part 
1 of this CubeSat Simulator series), it is the 
Electrical Power Subsystem (EPS) that 
seems to appear at or near the top of such 
lists.  The EPS includes the solar cell strings 
and panels, the batteries, charging 
controller, heaters, thermostats, and the 
power distribution circuits, among other 
components as well.  The literature shows a 
horror story involving any number of solar 
panel anomalies [2].   
 
In studying the Physics of Failure, we find 
two major categories of root causes in an 
otherwise well-designed and well-built 
system.  One is from latent (or built-in) 
defects of a part.  The other is from 
overstress.  Overstress is the exposure at 
any level of assembly to an excessive 
electrical, mechanical, thermal or other 
condition beyond its documented 
specifications or requirements.  The scope 
of this paper is therefore on anomalies 
common in a typical CubeSat EPS.   
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III.! FAILURE SIMULATIONS 
CubeSat missions on orbit do not always go according to 

plans.  Functional issues stemming from CubeSat design, 
electrical and mechanical parts, assembly, rework, handling, or 
the integration and test phase is a fact of life.  The tension or 
strain from sources such as launch, the radiation environment, 
outgassing effects, loose conductive particles afloat and more 
can cause intermittent operations, degraded performance or 
even, unfortunately, a failure.  Detecting and diagnosing 
impending failures is important, as it can help develop 
workarounds or solutions, or at least aid in avoiding such issues 
in the future.  A steely-eyed missile man once confided that the 
worst kind of failure is having launched a “flying brick,” where 
no telemetry is received from a satellite after being deployed, 
and as a result, there are no clues—and no recourse—as to what 
kind of failure occurred.   

In this section, we will simulate a degrading performance 
parameter or two and a few nearly-catastrophic failures, and 
then walk you through some steps on how to detect and diagnose 
the symptoms by using the available housekeeping telemetry.  
Our real-life training anomalies relating to the EPS are the 
following:  

•! Solar cell short circuit 

•! Solar cell open circuit 

•! Solar cell polarity reversal 

•! Solar cell high impedance 

•! I2C sensor failure 

•! I2C bus failure 

•! Boost converter failure 

These failures can be easily simulated with the AMSAT 
CubeSat Simulator with a few test leads.  In the latest design, we 
use JST connectors between the solar cells and the Solar Power 
Board.  These connectors are widely used in RC (Remote 
Control) vehicles and aircraft.  We use a few special JST 
connectors as well as some mini clip test leads to simulate these 
failures. 

The block diagram for the AMSAT CubeSat Simulator is 
shown in Figure 4.  The large block on the left is the Electrical 
Power Subsystem (EPS), which is implemented as the custom 
AMSAT Solar Power Board in the board stack.  We will 
reference this EPS subsystem several times in this article when 
discussing failure scenarios.  For more information about the 
Solar Power Board, including a full-size schematic diagram in 
color, see our CubeSat Simulator Wiki [3].  

To simulate a short circuit, we can simply (and safely) 
connect the positive side of the solar cell to ground after the 
current and voltage sensor module.  Interestingly, this actual 
failure occurred in our first iteration of the concept Simulator 
model built using the Beta vB3 PCB.  Using the telemetry, we 
were able to diagnose this failure and find the cause.  Figure 5 
shows the telemetry we observed after constructing the 
Simulator where one solar panel was accidentally directly tied 
(or shorted) to ground.   

 
Fig. 5.! Solar Panel Shorted Circuit to Ground Failure. 

At first the telemetry appears to be correct, as we see four 
peaks of the +X, +Y, –X, and –Y panels as it rotates on the 
turntable in front of the halogen work lamp, as shown in Figure 
3.  However, upon a closer look, we see the –Y solar cell current, 
but there is no corresponding drop in the battery current, 
indicating that none of the power has been transferred to the 
Simulator. (Under a short circuit condition, a solar cell will 
produce maximum current, but since the voltage across it is zero 
volts, no power is produced.)  This condition of maximum 
current but no power output indicated that the solar cell was 
short circuited.  Using this actual telemetry, we were able to find 
the location of the short circuit and repair it. 

An open circuit can be simulated by unplugging the JST 
connector to the solar cell.  This results in the telemetry shown 
in Figure 6, where there is no current detected for the +Y panel 
which has been disconnected.  Note that a short circuit before 
the current and voltage sensor would also show up in the 
telemetry this way. 

 
Fig. 6.! Solar Panel Open Circuit Failure. 

To simulate a polarity reversal, we made a back-to-back JST 
connector but swapping the red and black wires.  This cable is 
shown at the bottom of Figure 7. 

Note that this would be an unlikely in-flight failure but could 
be a construction failure that was only detected after launch.  A 
series diode in the EPS circuit (see the diodes shown in the EPS 
block between the Current and Voltage Sensors and the Boost 
Converter module in Figure 4) in the CubeSat Simulator 
prevents the solar cell from drawing current from the circuit or 
applying a negative voltage to the output.  The resulting 
telemetry is shown in Figure 8 where the reversal has been 
applied to the +X panel.  The data is identical to Figure 6 where 
the panel was open circuited. 
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Fig. 7.! Back-to-back cables used to Simulate Solar Panel Failures, top: series 
potentiometer cable, bottom: polarity reversal cable. 

 
Fig. 8.! Solar Panel Reverse Polarity Failure. 

To simulate a failing solar cell or a high resistance contact 
on a cell, we made a back-to-back JST connector with a series 
100 ! potentiometer (variable resistor) which was inserted 
between the solar panel and the board. This cable is the top cable 
shown in Figure 7.  The resulting telemetry is shown in Figure 
9 when the resistance was connected in series with the    –Y 
panel and set to approximately 36 !.  The telemetry shows a 
current peak for the –Y panel, but it is much less than the other 
three panels (45 mA compared to 145 mA). If the Simulator was 
tilted to simulate an off-axis rotation, there would have been a 
corresponding change in the +Y current peak, but on this graph 
it is unchanged. 

 
Fig. 9.! Solar Panel High Resistance Failure. 

 The Inter-Integrated Circuit (I2C) bus is how the Raspberry 
Pi gathers current and voltage data for telemetry.  In the CubeSat 
Simulator EPS, there are up to seven current and voltage sensor 
modules as shown in Figure 4.  There is one monitor for each of 
the solar panels and one monitor for the battery.  The CD&H 
accesses them via the I2C buses on the Raspberry Pi Zero W.  
An I2C sensor failure can be simulated by simply unplugging 
the current and voltage monitoring module from the Solar Power 
Board. This results in no current being detected, which is 
identical to the open circuit telemetry of Figure 6. 

A failure of a complete I2C bus can be simulated in software 
by disabling the bus.  The CubeSat Simulator CD&H uses three 
I2C buses on the Raspberry Pi: /dev/i2c-0, /dev/ i2c-1, and 
/dev/i2c-3.  The use of these buses is shown in Table 1.   

TABLE I. ! RASPBERRY PI I2C BUS TELEMETRY DATA 

Bus Use  
/dev/i2c-0 –X, –Y, and –Z current and voltage sensors 

(addresses hex 40, 41, and 44) 
/dev/i2c-1 +X, +Y, +Z, and battery current and voltage 

sensors (addresses hex 40, 41, 44, 45) and the 
5V power bus current sensor (address hex 4a) 

/dev/i2c-3 Temperature sensor on Digital Transceiver 
board (address hex 48) 

 

For this simulation, we disable the i2c-0 bus on the 
Raspberry Pi (by commenting out the dtparam=i2c_vc=on 
setting in the /boot/config.txt file and then rebooting the Pi -
- see [4] for details of the software configuration).  Note that if 
the I2C bus pull-up resistors on the PCB are omitted from the 
board (see the Solar Power Board schematic), the I2C bus will 
effectively be disabled as well. 

The result is a loss of current telemetry on the –X, –Y, and –
Z solar cells, as shown in Figure 10.  This lack of telemetry on 
all of the sensors on the same bus points to a bus failure rather 
than individual sensor failures.  If all three solar cells had failed 
we would also have seen zeros, but we would have also seen a 
spike in the battery current up to 140 mA, as we saw in failures 
shown in Figures 5, 6, 8, and 9.  Since the battery current stays 
under 100 mA, this confirms that it is a sensor failure, rather than 
a solar panel failure.  If the /dev/i2c-1 bus had failed, we would 
have lost the +X, +Y, +Z, and battery current telemetry 
information. 

One curious thing about this telemetry is that the battery 
current dropped by approximately 40 mA from previous data.  
We haven’t had time to investigate why this is, although it was 
repeatable. 

 
Fig. 10.!I2C Bus Failure 
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During the building of one Solar Power Board, we 
incorrectly adjusted the potentiometer on the boost converter 
module (U1 in the schematic Figure 4).  This resulted in 
telemetry that simulated a boost converter failure.  The telemetry 
is shown in Figure 11.  The +X, +Y, –X, and –Y current 
waveforms can be seen, but they are all much smaller than 
expected, and the resulting reduction in the battery current from 
140 mA doesn’t appear.  Seeing this telemetry, we disconnected 
the output from the Solar Panel Board and measured it under 
illumination.  Instead of the desired 15 V, it was reading 4.5 V.  
After re-adjusting the boost converter module so the output was 
15 V under full illumination, the telemetry curves returned to 
normal. 

 
Fig. 11.!Boost Converter Failure. 

IV.!EFFICIENCY AND MAXIMUM POWER POINT 
Using the voltage, current, and power sensor information 

available on the CubeSat Simulator, we can determine the 
efficiency and maximum power point (MPP).   

There are two electrical efficiencies that can be determined 
in the CubeSat Simulator from our telemetry.  The first is what 
we will call the battery efficiency.  This is the efficiency in 
transferring power from the NiMH battery to the 5 V bus on the 
GPIO (General Purpose Input Output bus) connector.  This 
measures the efficiency of the voltage transformation on the 
MoPower UPS V2 board.  The product of the battery voltage 
and the battery current is the input power, while the 5 V bus 
voltage multiplied by the bus current represents the output 
power for this efficiency calculation. 

The other efficiency is the solar power charging efficiency. 
The solar panels provide power to the simulator which reduces 
the power needed to be supplied by the battery to energize the 5 
V bus.  In this efficiency calculation, the solar cell power plus 
the battery power is the input power, while the output power is 
as measured on the 5 V bus.   

Using the telemetry-only software on the Raspberry Pi, we 
measured both of these efficiencies.  First, we measured the 
battery efficiency, running with the RBF (Remove Before 
Flight) pin removed but under no illumination. The data point 
was the battery voltage of 8.5 V, battery current of 148 mA, 
which is an input power of 1258 mW, and the bus voltage of 5.1 
V, bus current of 209 mA, which is an output power of 1065 
mW.  This gave an efficiency of 85%. 

Next, we used a 250 W halogen work lamp at a distance of 
10 cm to illuminate one of the solar panels.  We used this data 

to calculate the solar power charging efficiency.  The data point 
was the solar panel voltage of 3.15 V, solar panel current of 167 
mA, which is a power of 526 mW from the solar panel, a battery 
voltage of 8.6 V, battery current of 90 mA, which is a power of 
774 mW from the battery, and the bus voltage of 5.1 V, bus 
current of 201 mA, which is an output power of 1025 mW.  This 
gave an efficiency of 79 %.  This is lower because the Solar 
Power Board includes a series diode between each solar panel 
and the boost converter circuit (see EPS block of Figure 4), each 
of which produce losses. 

We also characterized the solar cell in terms of its current (I) 
versus voltage (V) curve and power (P) versus voltage (V).  We 
measured this by unplugging the Vin- pin on the +X solar cell 
current and voltage sensor.  We then connected this pin to 
ground through a 100 ! potentiometer (variable resistor). This 
modification is shown in Figure 12. With the telemetry-only 
software running, we adjusted the potentiometer from 100% to 
0% at 10% intervals, pausing for 1 second so that the telemetry 
could record the values.  We then plotted this data in Excel.  This 
graph is shown in Figure 13. 

 
Fig. 12.!Modification of Voltage and Current Monitoring Board to Characterize 
Solar Cell. 

 
Fig. 13.!Current versus Voltage for the Solar Panel. 

We also graphed the Power versus Voltage characteristic for 
the solar cell to find the Maximum Power Point (MPP) for this 
illumination level. Note that a Maximum Power Point Tracker 
(MPPT) is an algorithm which tracks this maximum efficiency 
point automatically in an EPS. This curve is shown in Figure 14.  
The peak of this curve represents the maximum power point for 
this solar panel and level of illumination, which is about 3.4 V.  
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Dividing by the power at this point, 562 mW, gives the current 
of 166 mA.  Note that this solar cell is rated at 4 V, 160 mA, 0.5 
W, which agrees well with these results.  

We then compared the actual voltage and current operating 
point with this maximum power point and found it to be fairly 
close.  The operating point of 3.15 V and 167 mA is plotted on 
Figures 13 and 14  as a dot so you can see how close it is to the 
maximum power point.  This indicates that the design could be 
improved to extract another 35 mW of power from the solar cell. 

 
Fig. 14.!Power versus Voltage for the Solar Panel Showing Maximum Power 
Point. 

V.! ARDUINO PAYLOAD 
Just like a real CubeSat flight model, the new AMSAT 

CubeSat Simulator can support payloads, as shown in Figure 4.  
To demonstrate this, we connected an Arduino Uno [5] as a 
payload.   An Arduino is a low-cost open source hardware and 
software microcontroller board which is popular with 
experimenters and educators. We used the Raspberry Pi 
/dev/i2c-3 I2C bus to make the connection, using the 
expansion header on the Solar Panel Board (see Figure 4).  We 
set the Arduino to the address of 0x4C so that it would not 
conflict with the other devices on the bus (the –X, –Y, and –Z 
current sensors).  The setup is shown in Figure 15. 

To demonstrate the Raspberry Pi reading data from the 
Arduino, we read the Arduino analog inputs A0, A1, and A2 
over the I2C bus.  On the Raspberry Pi, we first wrote the 
address number (0 to 2) then read a byte from the Arduino.  The 
Arduino Uno sketch (C program) used the Wire library to listen 
on the I2C bus at address 0x4C to read the address number from 
the Raspberry Pi, then did an analogRead of the specified 
analog input, converted this to a single byte, then wrote it to the 
Raspberry Pi.  

We took eight AAA NiMH battery cells and tapped each cell 
individually.  We read the first three cell voltages using A0, A1, 
and A2.  For example, we read the equivalent values of 230, 480, 
and 715 which represented the cumulative voltages of the first 
three cells.  Converting these to voltages gave 1.12 V, 2.35 V, 
and 3.49 V.  Taking the differences gave the first three cell 
voltages of 1.12 V, 1.23 V, and 1.14 V.  These telemetry values 
could be used to detect the failure of one cell in a battery.  This 

could be simulated by removing and discharging one cell from 
the battery, then replacing it back in the battery. 

 
Fig. 15.!Arduino Uno as a Payload on the CubeSat Simulator. 

CONCLUSION 
We have shown some new activities possible with the 

AMSAT CubeSat Simulator.  An underlying theme of these 
activities is detecting and troubleshooting failures using 
housekeeping telemetry.  This article documents and explores 
these activities.  In the future, we will provide detailed 
instructions so that these activities might be more efficiently 
replicated in the classroom to illustrate satellite and STEM 
principles. 

BRAINSTORMING FUTURE TOPICS  
Would you like to explore the topic of adding new sensors 

to the AMSAT CubeSat Simulator to serve as either a payload 
or as a subsystem element?  How about sending commands by 
laptop or smartphone?  Or might you like to develop a satellite 
technology acronym “decoder” or glossary?   We are listening.   

If you are interested in using an AMSAT CubeSat Simulator 
in your classroom or public demonstration, then you have 
options: to build or to borrow.  You are encouraged to follow 
our fully open source designs to build your own AMSAT 
CubeSat Simulator [6] or to perhaps borrow one from AMSAT.  
AMSAT Educational Relations has a number of simulator units 
available for loan.  Contact us for information. 

The authors and our beta testers are always looking for feedback 
on these activities or new activities.  Please share any feedback 
with us at ku2y@amsat.org and n8pk@amsat.org. 
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