
!"#$%!&#!&&'(#)))
!!
"#$%&&!'(&)!*********************************+
,-!.$&!/#(&0!1!234"5

"6/"7!89,&/:;!/(<9=:;$0!
>:0;!+?!@:(=90&!/(<9=:;($AB!:AC!
70$9,=&BD$$;(A%!****************************E
,-!"=:A!F*!.$DAB;$A!1!2GHI!!!!!!
>:;!2(=0$-!1!JK>2
!!
7$<!8=:0LM!2+N5M!:AC!;D&!OP&A;!
Q$0(R$A!7&=&BS$M#&!TOQ7U!********VV
,-!F$,!6SW)(&0!1!JXQI!!

Y@!W&A&0:;$0!7&SDA(Z9&B![$0!
/#:S&!"##=(S:;($AB!********************V+
,-!.90%&A!':AD:<&=!1!5JE"\]

\6+V!"S;(P:;($AM!50%:A!>(#&!
8:S;9B!J:;($A:=!6$A9<&A;!*****V^
,-!>:;0(SL!/;$CC:0C!1!4\^O42_
'"`O42

!"#$%&'()&*+,-.!**************HH

!!!!!!!!!!

!"#!$
!"#"$%&'()'*+%,-./%,01-2%3"4
52(61(7-'(/%89%:";<$=:$:#

>2*1'+1)?@6
%&#$!'()%!*+

A-%52(61(7-'(/%89
?(+%?-%?++1-1'(?@
*+!$,-.!"./%!(0

.$&!2$0A$)BL(M!2F3NW2

1&&!&$2"$#*+!$,-&
F&0AD:0C!.:;R&SLM!'"3F6.

!\$9%=:B!a9:%=(:A:M!2"HG>4_E
>:9=!W0:P&=(A&M!21IGF

,-./01)234)5/0617)8))"9:;</=1)3>?@

!"#$%&'()&*+,-.

http://cubesatsim.org ©2019 Alan Johnston and Pat Kilroy 1

The New AMSAT® CubeSat Simulator:
Part 3, New Activities:

Failure Simulations and Troubleshooting using Telemetry

Alan B. Johnston, PhD, KU2Y
Vice President Educational Relations, AMSAT

Assistant Professor of Electrical and Computer Engineering,
Villanova University
Villanova, PA, USA
ku2y@amsat.org

Pat Kilroy, N8PK
Flight Systems Integration & Test (I&T) Engineer,

NASA Goddard Space Flight Center
Greenbelt, MD, USA

n8pk@amsat.org

Abstract—The AMSAT CubeSat Simulator is a Raspberry Pi-
based, 3D printed functional model of a CubeSat satellite that
transmits current, voltage, and temperature telemetry on the UHF
ham radio band. This paper describes educational activities that
can be performed with the Simulator relating to failure
simulations and troubleshooting using telemetry. In addition, we
demonstrate the use of an Arduino as payload.

Keywords—cubesat, simulator, telemetry, AMSAT, ham radio,
raspberry pi, arduino

I.! INTRODUCTION
In 2018, we introduced the new AMSAT CubeSat Simulator

as a tool for satellite technology education and demonstrations.
We described the proof-of-concept prototype that we built and
demonstrated at the 2018 AMSAT Annual Meeting & Space
Symposium in Huntsville, Alabama.

In The AMSAT Journal, January/February 2019 issue, we
described some educational activities that can be done with the
CubeSat Simulator by looking at the activities of the original
ARRL ETP CubeSat Simulator, as described by Mark Spencer,
WA8SME, roughly ten years ago, as fully referenced in our
earlier works.

In this article, we describe some new activities that we have
developed with the new CubeSat Simulator. These include
some interesting failure simulations, efficiency and maximum
power point calculations. In addition, we discuss using an
Arduino as a payload for the Simulator.

II.! BACKGROUND
The new AMSAT CubeSat Simulator, shown in Figures 1

and 2, is a Raspberry Pi Zero W-based, 3D-printed frame
structure, functional model of a “1U” CubeSat that is designed
to act, as reasonably as possible, as one flying in Low Earth
Orbit (LEO). Its purpose is to demystify to all how satellites
work. Like typical LEO satellites, this simulator runs on
rechargeable battery power and solar cell panels. Our model
currently transmits UHF telemetry on the 70 cm ham radio band
using the AMSAT OSCAR 7 (AO-7) format using AFSK
modulation. For details on the design and construction of the
simulator, see our paper in the 2018 AMSAT Annual Meeting

& Space Symposium proceedings [1] or as updated and edited
for the Nov/Dec 2018 issue of the AMSAT Journal.

Fig. 1.! The AMSAT CubeSat Simulator Proof of Concept Prototype.

Fig. 2.! The latest CubeSat Simulator board stack showing (from the top) the
Digital Transceiver Board, MoPower UPS V2 Board, Raspberry Pi Zero W
Board, and the custom AMSAT Solar Power Board with Current and Voltage
Sensors Mounted Vertically.

 2

The telemetry data graphs shown in this paper were
generated by placing the CubeSat Simulator on a rotating
turntable in front of a halogen work lamp, which simulates a
spinning satellite in space, as shown in Figure 3.

Fig. 3.! The CubeSat Simulator on a Rotating Turntable under Halogen Work
Lamp Illumination.

The remainder of this article describes new activities for the
CubeSat Simulator. They include some real-world simulated
and actual failures, with several plots to support troubleshooting,
and also some efficiency calculations. Each of these simulator
exercises to date provide the basis for valuable lessons in
understanding satellite technology and in developing one’s
skills.

Fig. 4.! Block Diagram of the CubeSat Simulator

SATELLITE FAILURE

The literature in the small satellite
community ranks the frequency of on-orbit
failures by subsystem. Of the top ten major
subsystems of every satellite (shown in Part
1 of this CubeSat Simulator series), it is the
Electrical Power Subsystem (EPS) that
seems to appear at or near the top of such
lists. The EPS includes the solar cell strings
and panels, the batteries, charging
controller, heaters, thermostats, and the
power distribution circuits, among other
components as well. The literature shows a
horror story involving any number of solar
panel anomalies [2].

In studying the Physics of Failure, we find
two major categories of root causes in an
otherwise well-designed and well-built
system. One is from latent (or built-in)
defects of a part. The other is from
overstress. Overstress is the exposure at
any level of assembly to an excessive
electrical, mechanical, thermal or other
condition beyond its documented
specifications or requirements. The scope
of this paper is therefore on anomalies
common in a typical CubeSat EPS.

 3

III.! FAILURE SIMULATIONS
CubeSat missions on orbit do not always go according to

plans. Functional issues stemming from CubeSat design,
electrical and mechanical parts, assembly, rework, handling, or
the integration and test phase is a fact of life. The tension or
strain from sources such as launch, the radiation environment,
outgassing effects, loose conductive particles afloat and more
can cause intermittent operations, degraded performance or
even, unfortunately, a failure. Detecting and diagnosing
impending failures is important, as it can help develop
workarounds or solutions, or at least aid in avoiding such issues
in the future. A steely-eyed missile man once confided that the
worst kind of failure is having launched a “flying brick,” where
no telemetry is received from a satellite after being deployed,
and as a result, there are no clues—and no recourse—as to what
kind of failure occurred.

In this section, we will simulate a degrading performance
parameter or two and a few nearly-catastrophic failures, and
then walk you through some steps on how to detect and diagnose
the symptoms by using the available housekeeping telemetry.
Our real-life training anomalies relating to the EPS are the
following:

•! Solar cell short circuit

•! Solar cell open circuit

•! Solar cell polarity reversal

•! Solar cell high impedance

•! I2C sensor failure

•! I2C bus failure

•! Boost converter failure

These failures can be easily simulated with the AMSAT
CubeSat Simulator with a few test leads. In the latest design, we
use JST connectors between the solar cells and the Solar Power
Board. These connectors are widely used in RC (Remote
Control) vehicles and aircraft. We use a few special JST
connectors as well as some mini clip test leads to simulate these
failures.

The block diagram for the AMSAT CubeSat Simulator is
shown in Figure 4. The large block on the left is the Electrical
Power Subsystem (EPS), which is implemented as the custom
AMSAT Solar Power Board in the board stack. We will
reference this EPS subsystem several times in this article when
discussing failure scenarios. For more information about the
Solar Power Board, including a full-size schematic diagram in
color, see our CubeSat Simulator Wiki [3].

To simulate a short circuit, we can simply (and safely)
connect the positive side of the solar cell to ground after the
current and voltage sensor module. Interestingly, this actual
failure occurred in our first iteration of the concept Simulator
model built using the Beta vB3 PCB. Using the telemetry, we
were able to diagnose this failure and find the cause. Figure 5
shows the telemetry we observed after constructing the
Simulator where one solar panel was accidentally directly tied
(or shorted) to ground.

Fig. 5.! Solar Panel Shorted Circuit to Ground Failure.

At first the telemetry appears to be correct, as we see four
peaks of the +X, +Y, –X, and –Y panels as it rotates on the
turntable in front of the halogen work lamp, as shown in Figure
3. However, upon a closer look, we see the –Y solar cell current,
but there is no corresponding drop in the battery current,
indicating that none of the power has been transferred to the
Simulator. (Under a short circuit condition, a solar cell will
produce maximum current, but since the voltage across it is zero
volts, no power is produced.) This condition of maximum
current but no power output indicated that the solar cell was
short circuited. Using this actual telemetry, we were able to find
the location of the short circuit and repair it.

An open circuit can be simulated by unplugging the JST
connector to the solar cell. This results in the telemetry shown
in Figure 6, where there is no current detected for the +Y panel
which has been disconnected. Note that a short circuit before
the current and voltage sensor would also show up in the
telemetry this way.

Fig. 6.! Solar Panel Open Circuit Failure.

To simulate a polarity reversal, we made a back-to-back JST
connector but swapping the red and black wires. This cable is
shown at the bottom of Figure 7.

Note that this would be an unlikely in-flight failure but could
be a construction failure that was only detected after launch. A
series diode in the EPS circuit (see the diodes shown in the EPS
block between the Current and Voltage Sensors and the Boost
Converter module in Figure 4) in the CubeSat Simulator
prevents the solar cell from drawing current from the circuit or
applying a negative voltage to the output. The resulting
telemetry is shown in Figure 8 where the reversal has been
applied to the +X panel. The data is identical to Figure 6 where
the panel was open circuited.

 4

Fig. 7.! Back-to-back cables used to Simulate Solar Panel Failures, top: series
potentiometer cable, bottom: polarity reversal cable.

Fig. 8.! Solar Panel Reverse Polarity Failure.

To simulate a failing solar cell or a high resistance contact
on a cell, we made a back-to-back JST connector with a series
100 ! potentiometer (variable resistor) which was inserted
between the solar panel and the board. This cable is the top cable
shown in Figure 7. The resulting telemetry is shown in Figure
9 when the resistance was connected in series with the –Y
panel and set to approximately 36 !. The telemetry shows a
current peak for the –Y panel, but it is much less than the other
three panels (45 mA compared to 145 mA). If the Simulator was
tilted to simulate an off-axis rotation, there would have been a
corresponding change in the +Y current peak, but on this graph
it is unchanged.

Fig. 9.! Solar Panel High Resistance Failure.

 The Inter-Integrated Circuit (I2C) bus is how the Raspberry
Pi gathers current and voltage data for telemetry. In the CubeSat
Simulator EPS, there are up to seven current and voltage sensor
modules as shown in Figure 4. There is one monitor for each of
the solar panels and one monitor for the battery. The CD&H
accesses them via the I2C buses on the Raspberry Pi Zero W.
An I2C sensor failure can be simulated by simply unplugging
the current and voltage monitoring module from the Solar Power
Board. This results in no current being detected, which is
identical to the open circuit telemetry of Figure 6.

A failure of a complete I2C bus can be simulated in software
by disabling the bus. The CubeSat Simulator CD&H uses three
I2C buses on the Raspberry Pi: /dev/i2c-0, /dev/ i2c-1, and
/dev/i2c-3. The use of these buses is shown in Table 1.

TABLE I. ! RASPBERRY PI I2C BUS TELEMETRY DATA

Bus Use
/dev/i2c-0 –X, –Y, and –Z current and voltage sensors

(addresses hex 40, 41, and 44)
/dev/i2c-1 +X, +Y, +Z, and battery current and voltage

sensors (addresses hex 40, 41, 44, 45) and the
5V power bus current sensor (address hex 4a)

/dev/i2c-3 Temperature sensor on Digital Transceiver
board (address hex 48)

For this simulation, we disable the i2c-0 bus on the
Raspberry Pi (by commenting out the dtparam=i2c_vc=on
setting in the /boot/config.txt file and then rebooting the Pi -
- see [4] for details of the software configuration). Note that if
the I2C bus pull-up resistors on the PCB are omitted from the
board (see the Solar Power Board schematic), the I2C bus will
effectively be disabled as well.

The result is a loss of current telemetry on the –X, –Y, and –
Z solar cells, as shown in Figure 10. This lack of telemetry on
all of the sensors on the same bus points to a bus failure rather
than individual sensor failures. If all three solar cells had failed
we would also have seen zeros, but we would have also seen a
spike in the battery current up to 140 mA, as we saw in failures
shown in Figures 5, 6, 8, and 9. Since the battery current stays
under 100 mA, this confirms that it is a sensor failure, rather than
a solar panel failure. If the /dev/i2c-1 bus had failed, we would
have lost the +X, +Y, +Z, and battery current telemetry
information.

One curious thing about this telemetry is that the battery
current dropped by approximately 40 mA from previous data.
We haven’t had time to investigate why this is, although it was
repeatable.

Fig. 10.!I2C Bus Failure

 5

During the building of one Solar Power Board, we
incorrectly adjusted the potentiometer on the boost converter
module (U1 in the schematic Figure 4). This resulted in
telemetry that simulated a boost converter failure. The telemetry
is shown in Figure 11. The +X, +Y, –X, and –Y current
waveforms can be seen, but they are all much smaller than
expected, and the resulting reduction in the battery current from
140 mA doesn’t appear. Seeing this telemetry, we disconnected
the output from the Solar Panel Board and measured it under
illumination. Instead of the desired 15 V, it was reading 4.5 V.
After re-adjusting the boost converter module so the output was
15 V under full illumination, the telemetry curves returned to
normal.

Fig. 11.!Boost Converter Failure.

IV.!EFFICIENCY AND MAXIMUM POWER POINT
Using the voltage, current, and power sensor information

available on the CubeSat Simulator, we can determine the
efficiency and maximum power point (MPP).

There are two electrical efficiencies that can be determined
in the CubeSat Simulator from our telemetry. The first is what
we will call the battery efficiency. This is the efficiency in
transferring power from the NiMH battery to the 5 V bus on the
GPIO (General Purpose Input Output bus) connector. This
measures the efficiency of the voltage transformation on the
MoPower UPS V2 board. The product of the battery voltage
and the battery current is the input power, while the 5 V bus
voltage multiplied by the bus current represents the output
power for this efficiency calculation.

The other efficiency is the solar power charging efficiency.
The solar panels provide power to the simulator which reduces
the power needed to be supplied by the battery to energize the 5
V bus. In this efficiency calculation, the solar cell power plus
the battery power is the input power, while the output power is
as measured on the 5 V bus.

Using the telemetry-only software on the Raspberry Pi, we
measured both of these efficiencies. First, we measured the
battery efficiency, running with the RBF (Remove Before
Flight) pin removed but under no illumination. The data point
was the battery voltage of 8.5 V, battery current of 148 mA,
which is an input power of 1258 mW, and the bus voltage of 5.1
V, bus current of 209 mA, which is an output power of 1065
mW. This gave an efficiency of 85%.

Next, we used a 250 W halogen work lamp at a distance of
10 cm to illuminate one of the solar panels. We used this data

to calculate the solar power charging efficiency. The data point
was the solar panel voltage of 3.15 V, solar panel current of 167
mA, which is a power of 526 mW from the solar panel, a battery
voltage of 8.6 V, battery current of 90 mA, which is a power of
774 mW from the battery, and the bus voltage of 5.1 V, bus
current of 201 mA, which is an output power of 1025 mW. This
gave an efficiency of 79 %. This is lower because the Solar
Power Board includes a series diode between each solar panel
and the boost converter circuit (see EPS block of Figure 4), each
of which produce losses.

We also characterized the solar cell in terms of its current (I)
versus voltage (V) curve and power (P) versus voltage (V). We
measured this by unplugging the Vin- pin on the +X solar cell
current and voltage sensor. We then connected this pin to
ground through a 100 ! potentiometer (variable resistor). This
modification is shown in Figure 12. With the telemetry-only
software running, we adjusted the potentiometer from 100% to
0% at 10% intervals, pausing for 1 second so that the telemetry
could record the values. We then plotted this data in Excel. This
graph is shown in Figure 13.

Fig. 12.!Modification of Voltage and Current Monitoring Board to Characterize
Solar Cell.

Fig. 13.!Current versus Voltage for the Solar Panel.

We also graphed the Power versus Voltage characteristic for
the solar cell to find the Maximum Power Point (MPP) for this
illumination level. Note that a Maximum Power Point Tracker
(MPPT) is an algorithm which tracks this maximum efficiency
point automatically in an EPS. This curve is shown in Figure 14.
The peak of this curve represents the maximum power point for
this solar panel and level of illumination, which is about 3.4 V.

 6

Dividing by the power at this point, 562 mW, gives the current
of 166 mA. Note that this solar cell is rated at 4 V, 160 mA, 0.5
W, which agrees well with these results.

We then compared the actual voltage and current operating
point with this maximum power point and found it to be fairly
close. The operating point of 3.15 V and 167 mA is plotted on
Figures 13 and 14 as a dot so you can see how close it is to the
maximum power point. This indicates that the design could be
improved to extract another 35 mW of power from the solar cell.

Fig. 14.!Power versus Voltage for the Solar Panel Showing Maximum Power
Point.

V.! ARDUINO PAYLOAD
Just like a real CubeSat flight model, the new AMSAT

CubeSat Simulator can support payloads, as shown in Figure 4.
To demonstrate this, we connected an Arduino Uno [5] as a
payload. An Arduino is a low-cost open source hardware and
software microcontroller board which is popular with
experimenters and educators. We used the Raspberry Pi
/dev/i2c-3 I2C bus to make the connection, using the
expansion header on the Solar Panel Board (see Figure 4). We
set the Arduino to the address of 0x4C so that it would not
conflict with the other devices on the bus (the –X, –Y, and –Z
current sensors). The setup is shown in Figure 15.

To demonstrate the Raspberry Pi reading data from the
Arduino, we read the Arduino analog inputs A0, A1, and A2
over the I2C bus. On the Raspberry Pi, we first wrote the
address number (0 to 2) then read a byte from the Arduino. The
Arduino Uno sketch (C program) used the Wire library to listen
on the I2C bus at address 0x4C to read the address number from
the Raspberry Pi, then did an analogRead of the specified
analog input, converted this to a single byte, then wrote it to the
Raspberry Pi.

We took eight AAA NiMH battery cells and tapped each cell
individually. We read the first three cell voltages using A0, A1,
and A2. For example, we read the equivalent values of 230, 480,
and 715 which represented the cumulative voltages of the first
three cells. Converting these to voltages gave 1.12 V, 2.35 V,
and 3.49 V. Taking the differences gave the first three cell
voltages of 1.12 V, 1.23 V, and 1.14 V. These telemetry values
could be used to detect the failure of one cell in a battery. This

could be simulated by removing and discharging one cell from
the battery, then replacing it back in the battery.

Fig. 15.!Arduino Uno as a Payload on the CubeSat Simulator.

CONCLUSION
We have shown some new activities possible with the

AMSAT CubeSat Simulator. An underlying theme of these
activities is detecting and troubleshooting failures using
housekeeping telemetry. This article documents and explores
these activities. In the future, we will provide detailed
instructions so that these activities might be more efficiently
replicated in the classroom to illustrate satellite and STEM
principles.

BRAINSTORMING FUTURE TOPICS
Would you like to explore the topic of adding new sensors

to the AMSAT CubeSat Simulator to serve as either a payload
or as a subsystem element? How about sending commands by
laptop or smartphone? Or might you like to develop a satellite
technology acronym “decoder” or glossary? We are listening.

If you are interested in using an AMSAT CubeSat Simulator
in your classroom or public demonstration, then you have
options: to build or to borrow. You are encouraged to follow
our fully open source designs to build your own AMSAT
CubeSat Simulator [6] or to perhaps borrow one from AMSAT.
AMSAT Educational Relations has a number of simulator units
available for loan. Contact us for information.

The authors and our beta testers are always looking for feedback
on these activities or new activities. Please share any feedback
with us at ku2y@amsat.org and n8pk@amsat.org.

REFERENCES
[1]! https://countingfromzero.net/amsat/CubeSatSimPaper.pdf
[2]! W. Brandhorst Jr, Henry & A. Rodiek, Julie & O'Neill, Mark. (2008).

“Stretched lens array: The answer to improving solar array reliability.
Conference Record of the IEEE Photovoltaic Specialists Conference.)
https://www.researchgate.net/figure/Solar-array-anomalies-by-
orbit_fig1_237690624

[3]! https://github.com/alanbjohnston/CubeSatSim/wiki
[4]! https://github.com/alanbjohnston/CubeSatSim/wiki/Software-Install
[5]! https://www.arduino.cc/
[6]! https://github.com/alanbjohnston/CubeSatSim
Authors’ Note: This article is Part 3 in a series. The other parts are available
in the AMSAT Journal or online at http://cubsatsim.org/papers.

	MayJuneCover
	CubeSatSim Article Part 3 - Troubleshooting Formatted

