
!"#$%!&#!&&'(#)))
!!
"#$%&&!'(&)!*********************************+
,-!.$&!/#(&0!1!234"5

67%(7&&0(7%!8#9:;&!**********************<
,-!.&00-!=>?;$7!1!@A.B
!!
8C&0!/&0D(E&C!8#9:;&!*****************F
,-!G$,&0;!=:7HC;$7!1!26I"J!!

69>E:;($7:K!G&K:;($7C!8#9:;&!***L
,-!"K:7!.$M7C;$7N!OM*P*!1!28QB

"R/"S!T(&K9!P:-!QAUV!***************V
,-!=0>E&!O:(%&!1!22<P5

O/"SQ!:79!8/@"OU!"99&9!
;$!;M&!"OG/!P(%(#&:;&0!
W$7C;&KK:;($7!!*****************************U+
,-!=$,!=0>7(7%:!1!4=I"OG

"7!6:C-!4:-!;$!4$0H!;M&!JX=:79!
/:;&KK(;&C!!*************************************UL
,-!G$7:K9!Y*!O:0C$7C!1!4<G2@

"R/"S!W>,&/:;!/(Z>K:;$0
O:0;!I[!SM&!Y0$>79!/;:;($7!!****QU
,-!"K:7!.$M7C;$7N!OM*P*!1!28QB!
O:;!2(K0$-!1!@LO2

!!!!!!!!!!

!"#!$
!"#"$%&'()'*+%,-./%,01-2%3"4
52(61(7-'(/%89%:";<$=:$:#

>2*1'+1)?@6
%&#$!'()%!*+

A-%52(61(7-'(/%89
?(+%?-%?++1-1'(?@
*+!$,-.!"./%!(0

.$&!2$07$)CH(N!2=3\Y2

1&&!&$2"$#*+!$,-&
=&07M:09!.:;]&EHN!'"3=R.

!P$>%K:C!^>:%K(:7:N!2"Q8O4_<
O:>K!Y0:D&K(7&N!21B8=

,-./01)234)5/0617)2))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))8/.9:!/;/<=)3>?@

!"#!$%&'()*%+,-



http://cubesatsim.org ©2019 Alan Johnston and Pat Kilroy  1 

The New AMSAT CubeSat Simulator:  
Part 4, The Ground Station 

 

Alan B. Johnston, KU2Y  
Vice President Educational Relations, AMSAT                                                              

Associate Teaching Professor of Electrical and Computer Engineering,                  
Villanova University 

Philadelphia, PA, USA                                                               
ku2y@amsat.org 

Pat Kilroy, N8PK 
Flight Systems Integration & Test (I&T) Engineer,                                       

NASA Goddard Space Flight Center                                                                                 
Greenbelt, MD, USA 

n8pk@amsat.org   

Abstract—The AMSAT CubeSat Simulator is a Raspberry Pi-
based, 3D printed functional model of a CubeSat satellite that 
transmits current, voltage, and temperature telemetry on the UHF 
ham radio band. This article describes options for a ground station 
to receive and decode housekeeping telemetry from the CubeSat 
Simulator. 

Keywords—cubesat, simulator, telemetry, AMSAT, ham radio, 
raspberry pi, sdr, rtl-sdr 

I.! INTRODUCTION 
We feel that, to the general public, the key concepts of a 

satellite ground station are akin to the line in an old movie, “Pay 
no attention to that man behind the curtain!”  Not so for CubeSat 
developers!  The ground station is essential in any space 
mission, as it is the only way to communicate with and 
command one’s satellite after launch.  However, we are 
surprised by the number of CubeSat teams who do not have a 
properly functioning ground station by the time their satellite is 
deployed on orbit.  Just as we believe building a CubeSat 
Simulator is an important step towards developing a successful 
CubeSat flight model for a launch, we believe that setting up and 
using a CubeSat Simulator Ground Station is a vital step-wise 
progression towards being able to communicate with one’s 
CubeSat after launch. 

In Huntsville, Alabama, in November 2018, we introduced a 
proof-of-concept prototype model of the new AMSAT® 
CubeSat Simulator as a tool for satellite technology education 
and demonstrations.  We initiated a Beta Builder & Beta Tester 
invitation to AMSAT members.  Shortly after, we officially 
“launched” the core of an encompassing STEM program at 
Hamvention 2019 in Dayton, Ohio during the AMSAT Update 
forum.  Of our four complete, working CubeSat Simulator 
models that debuted at the Hamvention, we loaned each of them 
to AMSAT members to take home to demonstrate at a high 
school, club meeting or public function.  The results so far have 
been highly successful and quite encouraging.   

This article is the fourth in a series introducing the Simulator.  
The first article explained the philosophy and design of the 
Simulator (AMSAT Journal, Part 1, Nov/Dec 2018).  The 
second showed some educational activities that can be 
performed with the Simulator, starting with activities designed 
for the original ARRL ETP CubeSat Simulator, as described by 
Mark Spencer, WA8SME, (AMSAT Journal, Part 2, Jan/Feb 

2019).  The third article described some interesting failure 
simulations, efficiency and maximum power point calculations, 
and using an Arduino platform as a payload interface for the 
Simulator (AMSAT Journal, Part 3, May/June 2019).  

This article introduces the CubeSat Simulator Ground 
Station and discusses the various options and tradeoffs in station 
design.  It includes a choice between a Windows PC Ground 
Station and a Raspberry Pi Ground Station.   

II.! BACKGROUND 
The new AMSAT CubeSat Simulator, shown in Figure 1, 

features a Raspberry Pi Zero W-based multi-board stack and a 
3D-printed frame structure.   

 
Fig. 1.! An AMSAT CubeSat Simulator showing the components.  From left 
to right: three board stack including Brandenburg Digital Transceiver Board, 
MoPower UPS V2; Raspberry Pi Zero; Custom AMSAT Solar Power Board 
with Current and Voltage Sensor daughter boards mounted vertically; 3D 
Printed CubeSat frame with solar panels; and RTL-SDR USB dongle with 
antenna for the Ground Station. 

These serve as a functional CubeSat model in a 1U form 
factor, less the ground station component.  It is designed as 
closely as possible to act as a standard 10 cm (4 inch) cube-sized 
satellite flying in Low Earth Orbit (LEO).  The purpose of this 
system is to demystify to all how satellites work.  Like typical 
LEO satellites, this simulator runs on rechargeable battery 
power and solar cell panels.  Our model currently transmits 
telemetry on the UHF band using the AMSAT OSCAR 7 (AO-
7) format using AFSK AX.25 1200 bps modulation.  For details 



 2 

on the design and construction of the simulator, see our paper in 
the 2018 AMSAT Annual Meeting & Space Symposium 
proceedings [1] or as updated and edited for the Nov/Dec 2018 
issue of the AMSAT Journal. 

The remainder of this article describes a Ground Station for 
the CubeSat Simulator.    

III.!GROUND STATION REQUIREMENTS 
The main requirement of the CubeSat Simulator Ground 

Station is to receive telemetry transmitted by the CubeSat 
Simulator, and enable the decoding and display of the 
information contained in the telemetry.  Telemetry, of course, 
includes the satellite’s health and welfare or “housekeeping” 
data downlinked, as well as the science data from each payload 
or “instrument” on the spacecraft bus.  For simplicity, most of 
our telemetry discussions tend to be of the common 
housekeeping variety because each instrument is so unique.  
Other requirements include that the Ground Station be 
reasonably low in cost, easy to setup and configure, and be 
similar to a real satellite ground station.   

A student recently asked innocently enough, and quite 
insightfully, “Why not just have the satellite send down its data 
directly without all the complexity of modulating, 
demodulating, encoding and decoding”?  Well, we wish the 
current state of the art in technology would permit that to 
happen.  It is not, and for a number of reasons.  So, such an 
investigation is left for the student to explore, and perhaps one 
day to develop a simpler solution for humankind!   

The functional blocks of a Ground Station are shown in 
Figure 2.  They are: Antenna electrical and mechanical 
subsystem, Feed Lines, Low Noise Amplifier, Receiver, and 
Decoder.  We will discuss each in terms of the requirements for 
the CubeSat Simulator Ground Station. 

 
Fig. 2.! Functional Blocks in a Satellite Ground Station. 

In an orbital satellite ground station, the antenna is a critical 
and complex part of the station.  However, since the CubeSat 
Simulator is usually in the same room as its Ground Station, the 
antenna can be very simple, even a short piece of wire.  And 
since the antenna can be co-located with the Ground Station, the 
feedline for the Simulator Ground Station can just be a 
connector.  Again, due to the simplicity, a Low Noise Amplifier 
is not needed for the Simulator.   

The receiver for the Ground Station also has simple 
requirements.  Any UHF FM receiver or scanner would work, 
as would a Software Defined Radio (SDR) receiver USB dongle, 
plugged into a laptop or PC or Raspberry Pi.  The following 
sections will discuss the details of this.   

The Decoder takes the output of the receiver and translates 
it to display and analyze the satellite telemetry.  In addition, the 
output from the Receiver might also be speakers or headphones, 
or an audio recording device.   

 

NASA Advice Given to CubeSat Developers 
   

Planning to build a CubeSat flight model?  Here 
are a precious few professional (“Been there, 
done that, failed a few times ourselves!”) advice 
snippets to consider before holding your 
Preliminary Design Review (PDR).  Can you 
incorporate any of these tips into the AMSAT 
CubeSat Simulator project that you are about to 
get underway?   
  
1. “Test early and test often.”  Very important!  
Cannot be over emphasized.  Fight diligently for 
the required schedule or budget.  Start from your 
component and subsystem level units at your 
incoming inspection upon procurement.  Verify 
the operation of each part or unit, comparing to 
the related spec sheet.  Contact the vendor about 
any discrepancy.    
  
2. “Test as you fly.”  That is, activate your 
ground station and converse with your satellite 
while it sits on a lab bench only a meter or two 
away.  Celebrate its responses.  This is called a 
Compatibility Test.  Perform DITL (“Day In 
The Life”) tests and deployment tests in the 
configuration as close as possible that you 
expect the satellite to experience on orbit, all on 
an open lab bench.  Accumulate hours of 
operation and log them.  Good job!  Then do the 
same under stresses, such as thermal, 
mechanical and RF emission environments.  
Have any CubeSat developers cut way back on 
proper testing for any number of reasons?  
Unfortunately, those are the ones who also have 
issues and challenges once on orbit and wonder 
why.  Hard facts.  Tough love?    
  
3. “Analyze closely your housekeeping 
telemetry and look for trends in your data.”  
Learn all the characteristics of your satellite 
almost as though it were a new born baby 
growing to a toddler through your telemetry 
data.  Watch for good trends.  Watch for not-so-
good trends and learn to perform 
troubleshooting on the ground, as opposed to in 
low earth orbit.  
  
4. “Develop a properly functioning ground 
station.”  Don’t rely solely on a distant, outside 
source or group.  Otherwise, hold a sufficient 
number of comprehensive Compatibility Tests 
with your remote ground station or stations, or 
network.  One’s ground station or network 
seems to be too often a late oversight.  Don’t let 
it happen to you.  Plan early.    
 



 3 

IV.!RADIO RECEIVER OPTIONS 
To receive the AFSK 1200 bps telemetry, almost any UHF 

FM transceiver or Handie Talkie (HT) will work, including the 
ultra low cost Baofeng HTs which sell for as little as $20.  An 
audio cable is needed to input the signal to a computer for 
telemetry analysis.  This cable transfers the line-level headphone 
audio output from the radio to an audio input on the computer.  
If the computer does not have a line-level audio input (but only 
a low-level microphone input) then adjustments with the HT 
volume knob or PC mixer controls might be required to avoid a 
distorted signal.  Otherwise a small series resistor might serve 
well as an attenuator if needed.   

V.! SDR RECEIVER OPTIONS 
Since the intent of the ground station is to analyze the 

telemetry, using an SDR receiver dongle is an obvious choice.  
There are a wide range of SDR USB dongles available today.  
We use the cheapest RTL-SDR dongle which sells for about 
$20. The “RTL” in RTL-SDR refers to the RTL2832U chip 
which functions as a wideband radio tuner.  It can be plugged 
into a Windows computer or Linux computer, such as a 
Raspberry Pi.  We will discuss the pros and cons of each 
computer configuration in the following sections.  The next 
section discusses the steps involved in demodulating and 
decoding of the signal. 

VI.!DEMODULATION AND DECODING 
The current version of the AMSAT CubeSat Simulator uses 

AFSK AX.25 1200 bps encoding of AO-7 formatted telemetry.  
This was chosen as it is simple and common and easy to decode.  
It is compatible with APRS (Automatic Packet Reporting 
System) decoders.  Future software updates may also support 
other modulation schemes, such as the DUV FSK (Data Under 
Voice Frequency Shift Keying) of the AMSAT Fox-1A, 1B, 1C, 
and 1D satellites or the BPSK (Binary Phase Shift Keying) of 
the Fox-1E satellite.   

To understand the requirements of the Decoder and 
Demodulator, let’s break down what “AFSK AX.25 1200 bps” 
means.  Note this is also sometimes written as AFSK AX.25 
1k2.  We will start with the radio signals received from the 
CubeSat Simulator on the UHF band.  The block diagram of this 
process is shown in Figure 3. 

 
Fig. 3.! Block Diagram of Demodulator and Decoder 

The radio signal sent by the CubeSat Simulator is an FM 
modulated digital signal.  A normal narrow-band FM 
demodulator is first used, at the carrier frequency of the RF 
signal.  The resulting audio after demodulation is a series of 
tones which represent the stream of 1’s and 0’s -- the binary data.  
A 1200 Hz tone represents a 1 (a “mark”) and a 2200 Hz tone 
represents a 0 (a “space”).  The data rate is 1200 bits per second, 
so the tone can change up to 1200 times each second.  For each 

period of 0.833 ms, the tone is detected in order to determine if 
a 1 or a 0 is being sent.  This is how demodulation of an AFSK 
(Audio Frequency Shift Keying) signal is performed.  The 
output from an AFSK demodulator is a stream of 1’s and 0’s. 

Next, the AX.25 Decoder will take this stream of 1’s and 0’s. 
The AX.25 decoder removes the AX.25 header, which is at the 
start of the frame.  This contains fields such as the Source and 
Destination call signs, etc.  The rest of the frame is the string of 
telemetry data.   For more information on the complete satellite 
telemetry decoding protocol stack, see this excellent summary 
of these and other protocols such as HDLC and KISS that are 
used in satellite telemetry decoding by Daniel Estevez, EA4GPZ 
/ M0HXM [2]. 

This telemetry data represents encoded values of measured 
voltages, currents, and temperatures on the CubeSat Simulator.  
Each of these values is a coded number.  We chose to encode 
them in a format in which AO-7 and later AMSAT satellites -- 
including AO-8 which Alan KU2Y worked back in the 1980s -- 
encoded this information suitable for transmission over CW.  
This is the memorable “hi hi 156 199 …” format where “hi hi” 
indicates the start of a packet frame of information, which is then 
followed by sets of three-digit numbers separated by a space.  
The first digit represents the channel number, and the next two 
digits are the encoded telemetry value.  For example, the solar 
panel electrical current channels are encoded by this formula: 

Current = 10 * (Value – 99) 

 where Value is a two-digit number, and Current is the current 
in mA.  Previous articles discuss interpreting these data.  

VII.!GROUND STATION MANUAL IMPLEMENTATION 
The steps in manually demodulating and decoding telemetry 

from the CubeSat Simulator are shown in Figure 4.  It begins 
with an RF (Radio Frequency) signal from an antenna on the left 
and ends with graphs displayed of telemetry data on the right.  A 
radio dongle produces a stream of IQ (In-phase and Quadrature) 
data centered about the carrier frequency of the CubeSat 
Simulator telemetry, around 440 MHz. An SDR receiver 
application is then used to perform the FM Demodulation.  A 
Virtual Audio Cable (VAC) loops back the playback audio to 
the recording microphone input for the AX.25 Decoder which 
outputs the telemetry data.  The Display function processes the 
mathematical formulas that convert the coded data into the 
originally measured voltages, currents and temperatures, which 
are then graphed.   

 
Fig. 4.! Ground Station Implementation of Demodulation and Decoding of 
Telemetry. 

For Windows, the applications corresponding to this are as 
follows: an RTL-SDR receiver dongle, the SDR# Software 
Defined Radio package, the VBCable (which provides a Virtual 
Audio Cable from the Sound Playback in Windows to the Sound 
Recording) and the Qtmm AFSK 1200 Decoder.  Then the user 
performs a manual cut-and-paste of the telemetry data into a 



 4 

spreadsheet for calculation and graphing.  The detailed process 
of how to do this in Windows is described in our project Wiki 
[3]. 

A screenshot showing all these applications working is in 
Figure 5.  You can see the key settings circled in red and labeled 
with a number:  

1.! SDR# Source set to RTL-SDR (USB) 

2.! SDR# Radio set to Narrow Band FM (NFM) 

3.! SDR# Frequency set to 440 MHz, centered about the 
telemetry signal 

4.! SDR# Bandwidth set to cover entire signal (about 20 
kHz) 

5.! Windows Sound Playback set to CABLE Input VB-
Audio Virtual Cable 

6.! AFSK1200 Decoder Input set to CABLE Output (VB-
Audio Virtual Cable) 

And note that when the signal is received, the Sound 
Playback CABLE Input, Sound Recording CABLE Output, and 
AFSK1200 Decoder all show full scale (green bars).   

 
Fig. 5.! Windows Screenshot Showing Key Settings in Applications. 

The cut-and-paste between the Qtmm AFSK 1200 Decoder 
application and the spreadsheet is shown in Figure 6, where the 
telemetry is pasted into the Data Input tab of the spreadsheet.  
The telemetry graphs are then displayed in the other tabs of the 
spreadsheet.   

 
Fig. 6.! Windows Screenshot Showing Cut-and-Paste from Decoder to 
Spreadsheet. 

We realize some steps in our set up procedures are more 
challenging than others, but please bear with us.  We will 
provide support and encouragement along the way!   

Our experience with this Ground Station setup with 
Windows has shown the main benefit to be low cost, with only 
an RTL-SDR dongle and a simple antenna needed, as most 
people have easy access to a Windows computer.  However, it 
has not proven to be easy to set up.  Here are the main issues we 
have encountered:  

1.! Difficulties installing the RTL-SDR drivers.  The 
RTL832U chip was designed for Digital TV using the 
DVB-T standard used in Europe.  The use of this chip 
as an SDR is essentially a hack, and to make it work, 
the official drivers that ship with Windows and Linux 
must be replaced.  This is a simple command line in 
Linux, but on Windows it is a procedure involving 
running a piece of software known as Zadig. You can 
see the number of steps involved here [4].  Also, this 
installation requires administrator privileges.  Some 
teachers do not have these rights on school-issued 
laptops and computers, so this can be annoying.  Also, 
occasionally, the driver installation simply fails for 
unknown reasons, which is a frustrating experience. 

2.! Configuring VBCable is a bit complex.  Differences 
between Windows computers means that a set of 
instructions can’t always be followed exactly.  
Different names and devices also complicates the 
configuration.  In the Wiki instructions [3] we show 
eight different screen shots of the Windows Sound 
control panel to try to explain the steps, showing how 
complex it is.   

3.! Tuning SDR# can also be a source of problems.  If the 
tuning isn’t centered about the telemetry signal, or the 
bandwidth not set wide enough, decoding may fail 
even though there is a signal.  However, this issue at 
least has educational value, in that it teaches the 
importance of correct receiver tuning, a useful skill.   

Issue #1 can be eliminated by using an SDR dongle which 
does not require driver installation, such as the FUNcube USB 
dongle.  However, the FUNcube dongle is much more expensive 
and does not have the wide software support that the RTL-SDR 
has.  There is a no-install RTL-SDR approach that works for 
Windows, Linux, and even Android and iOS.  It is described in 
the Appendix to this article. 

We have not yet found a simple solution to Issue #2 in this 
configuration.  One option might be making a physical loopback 
plug that connects the speaker to the microphone through the 
headset jack on a PC.  The best solution would seem to be to 
avoid generating audio that must be ported internally.   

Issue #3 can be solved by providing an XML file with the 
CubeSat Simulator frequency, bandwidth, and modulation pre-
configured as a frequency pre-set.  Just clicking on the name in 
the Frequency Manager in SDR# will correctly tune the signal.   

These, and other Windows alternatives for the various 
applications are listed in Table 1.    



 5 

TABLE I. ! WINDOWS APPLICATION OPTIONS 

Function Option Pros Cons 

Radio RTL-SDR Cheapest SDR Installation of Windows 
drivers is tricky 

Radio FUNcube 
Dongle 

No driver install, 
high quality SDR 

More expensive 

SDR SDR# Free, easy to use, 
many plugins 

Windows only 

SDR HDSDR Free, used by many 
satellite operators 

Windows only, complex 
user interface 

VAC VBCable Works Windows Sound 
configuration not easy 

VAC Virtual Audio 
Cable 

Works 
 

Not free, Sound 
configuration not easy 

Decoder Qtmm AFSK 
1200 Decoder 

Simple User 
Interface 

 

Decoder UZ7HO 
SoundModem 

Used by many 
satellite operators 

Complex User Interface 

Display MS Excel 
Spreadsheet 

Commonly used 
 

Not free 

Display LibreOffice Calc 
Spreadsheet 

All platforms, Free Functions slightly 
different from MS Excel 

Display Google Docs 
Spreadsheet 

Easy to share, Free Web based 

 

Note that if running on Linux, the same flow can be used, 
although different applications will be used.  For example, 
instead of SDR#, Gqrx could be used, and instead of VBCable, 
a Virtual_Sink can be configured with pulseaudio.   However, 
we suspect few teachers have access to a Linux desktop.  A 
bootable USB with Ubuntu could be used to allow any laptop to 
run Linux, but this is a bit advanced.  Soundflower provides 
Virtual Audio Cable functionality for Mac OS. 

VIII.!GROUND STATION AUTOMATIC IMPLEMENTATION 
A recent CubeSat Simulator Ground Station approach that 

we have come up with is an automatic approach. It simplifies the 
process greatly.  It uses two command line applications: rtl_fm 
and multimon-ng.  The first, rtl_fm is a simple demodulator 
application that comes with the RTL-SDR drivers, and runs on 
Windows or Linux.  Settings such as center frequency, 
bandwidth, and demodulation are set using command line 
parameters and options, and the output can be sent to an audio 
driver, a file, or ‘piped’ to another command line application.  
The other, multimon-ng is a command line demodulator for a 
variety of digital encodings, including AFSK AX.25 1200.  The 
input signal can come from another program, and the output is 
the decoded text.   

This single command both demodulates and decodes the 
CubeSat Simulator telemetry: 

rtl_fm -f 440.386M -s 22050 -g 48 - | multimon-ng -a AFSK1200 -A -t raw - 

The -f option sets the frequency, while the -s option sets the 
bandwidth.  The | is the ‘pipe’ command which connects the 
output from the first program rtl_fm to the input to the next 
program multimon-ng.  This completely avoids the audio 
porting issue of the previous approach.  The -a option sets AFSK 
AX.25 1200 for decoding. 

This one command then replaces the SDR, Virtual Audio 
Cable, and AFSK 1200 Decoder blocks in Figure 4, resulting in 
the blocks shown in Figure 7.  

 
Fig. 7.! Ground Station Implementation of Automatic Decoding of Telemetry. 

An example output is shown in Figure 8. 

 
Fig. 8.! Automatic Telemetry Decoding in Windows with multimon-ng. 

The Windows configuration for this Automatic Decoding is 
in the Wiki page [5]. 

This command could also be used on a Raspberry Pi.  
However, there are other significant advantages to a Raspberry 
Pi Ground Station that are discussed in the next section. 

IX.!RASPBERRY PI GROUND STATION 
It is possible to configure a Raspberry Pi as a Manual or 

Automatic Ground Station, as described in the previous section.  
However, there are additional other benefits to using a 
Raspberry Pi. 

1.! All the software can be pre-installed on a micro SD 
card, which can be shipped or downloaded to turn any 
Pi instantly into a CubeSat Simulator Ground Station.  
This saves about an hour of software download and 
installation and configuration, and is guaranteed to 
work. 

2.! The OpenWebRX application [6] can be used to share 
the RTL-SDR with other computers running just a web 
browser.  Up to twenty users can then independently 
tune and decode the telemetry -- very useful for a 
classroom exercise.  See Figures 9 and 10. 

3.! Even the spreadsheet telemetry analysis can be done on 
the RPi using LibreOffice Calc.  The LibreOffice suite 
is pre-installed in the standard “Raspbian OS with 
desktop and recommended software” as shown in 
Figure 11.   

4.! The Pi can be configured as a Wi-Fi Access Point (AP) 
using RaspAP [7] so that a dedicated Wi-Fi router is 
not needed.   



 6 

5.! A teacher without a computer or laptop can use the Pi 
if they have an HDMI monitor (display), USB mouse 
and USB keyboard.   

6.! An inexpensive touch LCD display and a USB power 
pack turns the CubeSat Simulator Ground Station into 
a cool handheld device, although the text size on the 
screen is quite small.   

 
Fig. 9.! OpenWebRX on a Raspberry Pi 

 
Fig. 10.!OpenwebRX on iOS 

 
Fig. 11.!Cut and Paste on Raspberry Pi Between Decoder and Spreadsheet. 

The full instructions on how to configure a Raspberry Pi as 
a ground station are on our Wiki [8] and has been tested with a 
Raspberry Pi 3B, 3B+ and 4B, as shown in Figure 12. 

We plan to include a Raspberry Pi Ground Station with the 
AMSAT CubeSat Simulator units available to loan for your 
classroom or event.   

 
Fig. 12.!Raspberry Pi Ground Station running OpenWebRX with Touch LCD 
Display 

X.! FUTURE 
In addition to running their own ground station, many 

CubeSat operators can benefit from SatNOGS, the open source 
global network of receive-only satellite ground stations [9]. To 
show how this works, we have been collaborating with 
SatNOGS to enable CubeSat Simulator data to be processed and 
stored in their databases.  For example, you can see an 
experimental Dashboard for the CubeSat Simulator at this link 
[10]. 

You can also see all the other satellites telemetry dashboards 
displayed here [11]. 

A future article will describe how to use the CubeSat 
Simulator to explore SatNOGS.   

The AMSAT CubeSat Simulator project is still a work in 
progress.  We are continuing to improve and develop materials.  
We also wish to hear from you, with questions, comments and 
ideas which may be reflected in a future article!   

CONCLUSION 
In this paper, we have explored the options for a CubeSat 

Simulator Ground Station.  Some of the options are very low 
cost, such as the Windows RTL-SDR approach.  Others, have 
great flexibility and possibility in the classroom, such as the 
Raspberry Pi Ground Station.  We strongly believe that CubeSat 
developers can benefit from setting up and using a CubeSat 
Simulator Ground Station.  One’s skills and techniques 
developed here will transfer directly to those required for the real 
flight model.   



 7 

The authors and our beta testers are always looking for feedback 
on these activities or new activities.  Please share any feedback 
with us at ku2y@amsat.org and n8pk@amsat.org. 

REFERENCES 
[1]! https://countingfromzero.net/amsat/CubeSatSimPaper.pdf  
[2]! https://destevez.net/2016/06/kiss-hdlc-ax-25-and-friends/  
[3]! https://github.com/alanbjohnston/CubeSatSim/wiki/Decoding-Telemetry  
[4]! https://www.rtl-sdr.com/rtl-sdr-quick-start-guide/    
[5]! https://github.com/alanbjohnston/CubeSatSim/wiki/Windows-

Automatic-Telemetry-Decoding  
[6]! https://sdr.hu/openwebrx  
[7]! https://github.com/billz/raspap-webgui  
[8]! https://github.com/alanbjohnston/CubeSatSim/wiki/Raspberry-Pi-

Ground-Station-Setup  
[9]! https://satnogs.org/  
[10]! https://dashboard.satnogs.org/d/VesVjq6mk/amsat-cubesat-simulator  
[11]! https://dashboard.satnogs.org  
[12]! https://github.com/alanbjohnston/CubeSatSim/wiki/No-Install-RTL-

SDR-Adapter-for-Windows,-Mac,-iOS,-and-Android    
 

APPENDIX - NO-INSTALL RTL-SDR 
This appendix describes a no-install RTL-SDR approach 

that does not require driver installation, administrator rights on 
the computer, and works with Windows, Mac, Linux, Android, 
and iOS. 

The approach is very simple and requires a $20 OpenWrt 
Wi-Fi hub, an Ethernet cable, and the use of an SSH client such 
as PuTTY or ssh.  The steps to configure and install the software 
on the hub are described in the Wiki here [12] The RTL-SDR is 
plugged into the USB port of the hub, and the computer accesses 
it over Ethernet or Wi-Fi using the rtl_tcp application running 
on the hub. 

On Windows, plug the USB power cable of the hub into a 
USB port on the laptop.  Plug the Ethernet cable into the laptop 
and into the LAN port on the hub.  Run SDR# software as usual, 
but for the input, select RTL-SDR(TCP) instead of RTL-
SDR(UDP) option.  You will need to enter the IP address of the 
hub, which for the model I used was 192.168.8.1.  Click the Play 
triangle, and you will have access to the RTL-SDR over the 
Ethernet cable, as shown in Figure 13. 

This can also be used without the Ethernet cable by 
connecting to the Wi-Fi of the hub.  The downside to this is that 
you will lose internet connectivity since the hub does not have a 
WAN connection to it. 

 

 
Fig. 13.!No Install RTL-SDR with Windows Laptop. 

This Wi-Fi approach also works for Android and iOS.  If a 
powerpack is used to power the hub, then you have a wireless 
solution, as shown in Figure 14. 

 
Fig. 14.!No-Install RTL-SDR with Android, running SDR Touch Application. 

Sometimes the RTL-TCP connection will stop working.  In 
order to re-establish it, you will need to reset the hub by turning 
it off and on by unplugging it from the USB power source.   

 
Authors’ Note: This article is Part 4 in a series.  The other parts are available 
in the AMSAT Journal or online at cubsatsim.org/papers  

 


